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P S Häfliger1, S T Ochsenbein2, B Trusch2, H-U Güdel2 and
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Abstract
α-MnMoO4 is a tetrameric magnetic cluster system which undergoes a transition to
three-dimensional antiferromagnetic order at TN = 10.7 K. In the ordered state the Mn2+ spins
(sν = 5/2) are ferromagnetically aligned within the tetramer, resulting in a total cluster spin
S = 10. The magnetic excitation spectrum consists of eight excitation modes of tetramer origin
propagating in the whole reciprocal space. From single-crystal inelastic neutron scattering
investigations the three-dimensional coupling scheme is rationalized in the framework of a
tetramer-based dispersion model. The tetramer states and the energy dispersion of all the
magnetic excitations are described by Heisenberg-like intra- and intercluster exchange
interactions, respectively, thus α-MnMoO4 is a suitable tetrameric model system to study the
interplay of these interactions.

1. Introduction

The interplay of strong and weak exchange interactions in
insulating magnetic materials can lead to very interesting
phenomena such as low-dimensional magnets and single-
molecule magnets (SMMs). The latter are of considerable
current interest, both from a fundamental point of view and
for their application potential as the smallest nanomagnetic
units capable of storing a bit of information [1]. SMMs
represent the extreme situation, in which intermolecular
interactions are negligibly small, thus giving rise to the
typical SMM phenomena of slow magnetic relaxation of single
molecules at low temperatures as well as the steps in the
hysteresis curves resulting from molecular level crossings.
New phenomena emerge when exchange or dipole–dipole
interactions between the molecular clusters are no longer
negligible. A well documented system is the compound
[Mn4O3Cl4(O2CEt)3(py)3]2·8MeCN, in which the tetrameric
Mn3+/Mn4+ clusters occur as hydrogen-bridged dimers in the
crystal. As a result, the exchange-induced level ordering
changes significantly, and it is well accounted for by a
theoretical dimer model [2]. A similar model was employed
to interpret the magnetic properties of the cluster compound
[Mn4O3(OSiMe3)(OAc)3(dbm)3] [3]. But in this case, the

clusters do not occur as dimers, and the intercluster interactions
extend throughout the crystal in all directions. The dimer
model was used for simplicity, because the magnetic data did
not contain enough information to allow a physically more
realistic treatment of the intermolecular interactions.

The title compound α-MnMoO4 contains tetrameric oxo-
bridged manganese clusters, in which the Mn2+ ions occupy
the corners of a rhomb, as shown in figure 1(a). These
are linked by non-magnetic (MoO4)

2− groups in the three-
dimensional structure. In contrast to molecular cluster
materials, this will lead to significant intercluster interactions.
We thus have a model system to study the interplay of
intracluster and intercluster interactions. And since we have a
single crystal, we obtain a very detailed experimental picture
of this interplay, which allows a physically realistic model
treatment. Another unique feature of the title compound is the
ferromagnetic coupling of the Mn2+ spins within the tetramers,
vide supra, which leads to a very large cluster spin ground state
S = 10.

The inelastic neutron scattering (INS) technique has
proven to be a highly potent tool to determine the exchange
interactions in magnetic cluster systems. While there is a
large body of information on intracluster interactions in both
molecular magnetic compounds [4] and insulators doped with
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Figure 1. (a) The Mn4O16 cluster in α-MnMoO4 consisting of four
edge-sharing MnO6 octahedra with the Mn2+ ions shown as circles
and the oxygen ions at the corners. The Mn(1)–Mn(2) bond is along
the b-axis. The dotted lines mark the intracluster exchange
parameters j , j ′, and j ′′. (b) Antiferromagnetic arrangement of the
Mn 4 clusters (marked by diamonds) in α-MnMoO4 up to the sixth
coordinating shell. The arrows denote the spin orientation, which is
close to the [1, 0, 1] direction. The dotted lines mark the sublattice
plane defined by 2x + z − 1 = 0.

magnetic ions [5], INS experiments to unravel intercluster
interactions are rather scarce and moreover only available for
dimer systems [6, 7]. To our knowledge the present work
performed for the compound α-MnMoO4 is the first to address
the issue of intercluster interactions in a magnetic tetramer
system. Preliminary INS experiments have been performed on
a polycrystalline sample of α-MnMoO4 [8], which provided
information on the intra-tetramer interactions. However, in
order to obtain information on the inter-tetramer interactions,
INS experiments on a single crystal are indispensable.

Monoclinic α-MnMoO4 (a = 10.469 Å, b = 9.516 Å,
c = 7.143 Å, β = 106.3◦ [9]) contains Mn4O16 clusters
of four edge-sharing MnO6 octahedra as shown schematically
in figure 1(a). These clusters have C2h symmetry and give
rise to intracluster superexchange between the rhombically
arranged Mn2+ spins through the shared edges. The clusters
are linked by molybdate tetrahedra to form an extended
magnetic network. Long-range antiferromagnetic order exists
below TN = 10.7 K with almost saturated Mn2+ moments
at low temperatures [10]. The order is characterized by a
ferromagnetic alignment of the Mn2+ spins (sν = 5/2) within
the cluster, resulting in a total cluster spin S = 10. The
antiferromagnetic coupling between the clusters is defined by
the magnetic ordering wavevector q0 = (1, 0, 1/2). The
magnetic unit cell is obtained by doubling the c-axis of the
chemical unit cell, i.e., there are eight Mn2+ ions (or two Mn
tetramers) in the magnetic unit cell, and therefore the magnetic
excitation spectrum is composed of eight individual branches.

The present work is organized as follows. Section 2
provides a short summary of the experimental details. The
theoretical background is described in section 3. The main
part of the paper is section 4, which presents the experimental
data as well as their analysis in terms of the excitation model
outlined in the preceding section. Finally, the results are
discussed and some conclusions are given in section 5.

Figure 2. Energy spectrum of neutrons scattered from
polycrystalline α-MnMoO4 at 1.5 K [8]. The inset shows the
resulting energy level sequence in |S12, S34, S, M〉 tetramer notation.

2. Experiment

The ingredients for the sample synthesis were 33.0 g (0.47 mol)
MnO and 67.0 g (0.47 mol) MoO3, which were ground together
and placed in a platinum crucible. The mixture was heated to
1200 ◦C for 10 h, and then cooled down to room temperature
at a rate of 300 ◦C h−1. The solidified melt was used as starting
material for the crystal growth by the Czochralski method. The
platinum crucible was inductively heated to 1200 ◦C, and a
platinum wire was put into the melt. Slowly retracting the wire
from the melt over a temperature gradient, while rotating it, led
to a cylindrical product attached to the wire. X-ray diffraction
revealed that the final product was a 10 g single crystal of α-
MnMoO4.

The INS experiments were carried out on the triple-axis
spectrometers RITA and TASP at the spallation neutron source
SINQ at PSI Villigen. The instruments were operated at
fixed final energies of 4.9, 3.8, and 2.5 meV, giving energy
resolutions at the elastic line of 238, 141, and 66 μeV,
respectively. A cooled beryllium filter was placed in front
of the analyser in order to prevent higher-order reflections.
The single crystal was mounted in a He cryostat to keep the
temperature at 1.5 K for all experiments. The orientation of
the single crystal was varied in order to have the reciprocal (H ,
K , 0), (H , 0, L), or (0, K , L) plane parallel to the scattering
plane.

3. Theoretical background

Preliminary INS experiments were performed for polycrys-
talline α-MnMoO4 as shown in figure 2 [8]. At T = 1.5 K
four well defined transitions with varying widths and labelled
from I to IV were observed. The results could be rationalized
on the basis of the Oguchi model, in which the dominant intra-
cluster interactions are treated exactly, whereas the interactions
with the remainder of the system are approximated by an effec-
tive molecular field [11]. Thus, the spin Hamiltonian of a Mn
tetramer is

H = Hintra + Hmf. (1a)
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In the Heisenberg model, the intracluster Hamiltonian is
defined by

Hintra = −2 j (s1·s3+s1·s4+s2·s3+s2·s4)−2 j ′s1·s2−2 j ′′s3·s4,

(1b)
where j , j ′, and j ′′ denote the exchange parameters as
indicated in figure 1(a), and sν = 5/2 is the spin quantum
number of an individual Mn2+ ion. For a complete
characterization of the tetramer states, we need additional spin
quantum numbers resulting from the vector sums S12 = s1+s2,
S34 = s3 + s4, and S = S12 + S34 with 0 � S12 � 5,
0 � S34 � 5, and |S12 − S34| � S � (S12 + S34), respectively.
The molecular-field Hamiltonian at the tetramer site is then
given by

Hmf = −gμB Hmf

4∑

ν=1

sz
ν = −gμB HmfS

z (1c)

where g is the spectroscopic splitting factor, μB the Bohr
magneton, and Hmf the molecular field resulting from the
interaction with all Mn2+ ions which do not belong to the
tetramer. The eigenvalues of the Hamiltonian (equations (1))
can easily be shown to be

E(S12, S34, S, M) = − j [S(S + 1) − S12(S12 + 1)

− S34(S34 + 1)] − j ′[S12(S12 + 1) − 2si(si + 1)]
− j ′′[S34(S34 + 1) − 2si(si + 1)] − gμB HmfM, (2)

where −S � M � S. The energy level sequence of the states
|S12, S34, S, M〉 associated with transitions I–IV is shown as an
inset in figure 2. The energies �r of the transitions out of the
ground state |5, 5, 10, 10〉 are given by

�I = gμB Hmf, �II = 10 j + 10 j ′ + gμB Hmf,

�III = 10 j + 10 j ′′ + gμB Hmf, �IV = 20 j + gμB Hmf.

(3)
In [8] the identification of the tetramer states with the

transitions I–IV was based on considerations of the sign and
the size of the exchange parameters, but could not really be
proven by the experimental data. We will show in the present
work that INS experiments on a single crystal give enough
information to unambiguously determine the symmetry of the
different excitation levels.

The widths of the inelastic lines I–IV in figure 2 reflect the
dispersive behaviour of the transitions due to the intercluster
interactions, which are described in the Heisenberg model by
the Hamiltonian

Hinter = −2
∑

(nm,νμ)

jnm,νμsnν · smμ. (4)

Equation (4) considers interactions between neighbouring
tetramers 〈nm〉, mediated by all the spins ν = {1, 2, 3, 4} and
μ = {1, 2, 3, 4} at sites n and m, respectively. However,
equation (4) gives rise to a very large number of exchange
parameters jnm,νμ which cannot be determined reliably from
the dispersion relations for a complicated system like α-
MnMoO4. More specifically, the coupling of two tetrameric
units involves 4×4 = 16 individual exchange parameters, and
this number is likely to be tripled by considering the dispersion

spectra in three dimensions. Therefore we adopt a model which
was successfully used for the quantum spin dimer compounds
KCuCl3 [7] and TlCuCl3 [12]. It describes the intercluster
interactions by the Heisenberg Hamiltonian

Hinter = −2
∑

n,m

J nmSn · Sm, (5)

where the Sn and Sm are spin operators of the tetramers at
sites n and m, respectively, and Jnm is the effective exchange
coupling between them. Figure 1(b) shows the arrangement of
the six nearest-neighbour tetramers, which were considered in
the sum of equation (5) in the present work.

We now model the dispersive behaviour of the excita-
tions on the basis of the intracluster and intercluster Hamiltoni-
ans (1b) and (5), respectively. The intracluster interaction pro-
vides the energy scales corresponding to the transition energies
�r defined by equation (3), and the intercluster interactions
are considered perturbatively to yield the dispersion relations
through the Fourier transform of the couplings Jnm between
the tetramers [7, 12]:

h̄ω(q)r = �r − [J (q) ± |J ′(q)|]. (6)

Since, according to the antiferromagnetic structure of α-
MnMoO4, the tetramers are located on two sublattices with
opposite staggered magnetization, we have to distinguish the
Fourier transforms of the intra- and inter-sublattice exchange
parameters Jnm by J (q) and J ′(q), respectively, giving rise
to a splitting into acoustic and optic branches indicated in
equation (6) by the + and − sign, respectively. J (q) is
always real, while J ′(q) is complex if the vector joining sites
on different tetramer sublattices is not a lattice vector. The
dispersion relation (6) is valid in the limit |J (q) ± |J ′(q)|| �
�r , thus it can be rewritten as

h̄ω(q)r =
√

�2
r − 2�r [J (q) ± |J ′(q)|], (7)

which is an RPA-like expression reminding us of the random-
phase approximation [13].

The neutron cross-section for magnetic scattering by
the transition |S12, S34, S, M〉 → |S′

12, S′
34, S′, M ′〉 is given

by [13]

d2σ

d� dω
∝ F2(Q)U(Q)[1 ± cos(ϕ)]

∑

α

[
1 −

(
Qα

Q

)2
]
.

(8a)
F(Q) is the magnetic form factor, and U(Q) corresponds to
the structure factor S(Q) = ∑

νμ exp{iQ · (Rν − Rμ)} of
the tetramer, weighted by the transition matrix elements Aν

according to

U(Q) =
4∑

ν,μ=1

exp{iQ · (Rν − Rμ)}Aν Aμ, (8b)

where Q is the scattering vector, Rν the position of the Mn2+
ions in the tetramer, and the + and − signs refer to the acoustic
and optic branches, respectively. Since all the transitions I–IV

3
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Figure 3. Projections of the Brillouin zones onto the reciprocal
(H , K , 0), (H , 0, L), and (0, K , L) planes. Open and full circles
denote nuclear and magnetic Bragg peaks, and the corresponding
Brillouin zones are called optic and acoustic zones, respectively. The
dashed lines show the scans performed in the present experiments.

are governed by the selection rule �M = −1, the product
Aν Aμ is given by [8]

Aν Aμ = 〈S12, S34, S, M|s+
ν |S′

12, S′
34, S′, M ′〉

×〈S′
12, S′

34, S′, M ′|s−
μ |S12, S34, S, M〉. (8c)

The phase ϕ in equation (8a) is defined through

J ′(Q) = J ′(q) exp{−iτ · ρ} = |J ′(q)| exp{−iϕ}, (9)

with τ being a reciprocal lattice vector and ρ the vector
connecting the two tetramer sublattices. Some vanishing
matrix elements Aν may extinguish some of the 16 terms of
the function U(Q), giving zero weight to the corresponding
terms of the structure factor S(Q). In particular, the structure
factors associated with transitions II and III are reduced to the
form

Transition II: S(Q) = 1 − cos[Q · (R1 − R2)],
Transition III: S(Q) = 1 − cos[Q · (R3 − R4)].

(10)

As shown in figure 1(a), the vector R1 − R2 is parallel to
the b-axis, thus transition II vanishes for Q = (x, 0, 0) and
Q = (0, 0, x). Similarly, the vector R3 − R4 is perpendicular
to the b-axis, thus transition III cannot be observed for Q =
(0, x, 0).

Figure 4. Energy spectra of neutrons scattered from α-MnMoO4 in
the centre of the acoustic and the optic Brillouin zones at (1, 0, 0.5)
and (0, 0, 1), respectively. The lines are Gaussian fits to the data.

4. Results and data analysis

Most of the INS experiments were carried out with the
scattering vector Q in the reciprocal (H , 0, L) and (0, K , L)
planes as shown in figure 3. These planes are characterized by
a network of acoustic and optic Brillouin zones, so that both
the acoustic and the optic excitation branches can be observed.
The acoustic and optic Brillouin zones are associated with
the magnetic and nuclear Bragg peaks, respectively. A few
measurements were also performed in the reciprocal (H , K , 0)
plane, which, however, contains only optic Brillouin zones. All
these experiments confirmed the preliminary assignment of the
transitions suggested from the powder data [8]; in particular,
we could confirm the absence of transition II for scans along
Q = (x, 0, 0) and Q = (0, 0, x) as well as the absence of
transition III for scans along Q = (0, x, 0).

In order to demonstrate the power of INS experiments on
single crystals, we show in figure 4 the results obtained for
q = 0 excitations in the centre of both the acoustic and the
optic Brillouin zones (1, 0, 0.5) and (0, 0, 1), respectively. The
peaks can readily be assigned to transitions I, III, and IV, since
transition II is absent at Q = (0, 0, 1) due to the vanishing
structure factor. We recognize that the energies of the acoustic
excitations are lower than those of the optic excitations for
all transitions, but the most pronounced energy shift occurs
for transition I. The results of all the INS measurements are
presented in figures 5–7 for some major symmetry directions.
Data taken for different scattering vectors Q were reduced
to excitation wavevectors q according to Q = τ + q. The
overall dispersion of the magnetic excitations is of the order of
0.3 meV, in agreement with the observed peak broadening of

4
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Table 1. Model parameters Jn and �r defined by equations (5) and (6) determined for α-MnMoO4. d is the vector joining the interacting
tetramers; d denotes the modulus of d. A, fit to all transitions I–IV; B, fit to transition I; C, fit to transitions II–IV. χ2 denotes the standard
deviation of the calculated energies from those measured.

Jn (μeV), �r

Jn, �r d d (Å) Fit A Fit B Fit C

J1 ↑↓ ±(1/2, 1/2, 0) 7.08 −6(3) −15(2) −5(2)
±(−1/2, 1/2, 0)

J2 ↑↓ ±(0, 0, 1) 7.14 −2(3) −9(1) 1(3)
J3 ↑↑ ±(0, 1, 0) 9.52 16(3) 18(2) 16(3)
J4 ↑↑ ±(1, 0, 0) 10.47 50(8) 47(3) 53(7)
J5 ↑↑ ±(1/2, 1/2, 1) 11.07 13(4) 3(1) 16(3)

±(−1/2, 1/2, 1)
±(1/2,−1/2, 1)
±(−1/2,−1/2, 1)

J6 ↑↓ ±(0, 1, 1) 11.90 −5(4) −8(1) −2(3)
±(0,−1, 1)

�I (meV) 0.61(2) 0.64(2) —
�II (meV) 1.12(2) — 1.12(2)
�III (meV) 1.34(3) — 1.34(3)
�IV (meV) 1.71(3) — 1.72(3)
χ2 4.0 1.0 3.8

Figure 5. Dispersion of the four excitation branches I–IV observed
for α-MnMoO4 for the [x, 0, 0] and [0, 0, x] directions at 1.5 K. The
circles, diamonds, squares, and triangles refer to the excitation
branches I, II, III, and IV, respectively. The full and open symbols
denote the acoustic and optic excitations, respectively. The full and
dashed lines correspond to the calculated dispersion of the acoustic
and optic branches, respectively, using the parameters of fit A. The
bold lines refer to the calculated dispersion of the excitation branch I
using the parameters of fit B. The dotted lines labelled by ZC and ZB
mark the zone centre and the zone boundary, respectively.

the powder data displayed in figure 2. The dispersion of the
acoustic branch of the lowest excitation I shows the expected
softening near the magnetic Bragg points, where the Fourier

Figure 6. Dispersion of the four excitation branches observed for
α-MnMoO4 for the [0, x, 0] and [0, x, x/2] directions at 1.5 K. The
symbols and lines are as in figure 5.

transformed exchange function J (q) + |J ′(q)| has its absolute
maximum.

We now proceed to analyse the observed excitations
according to equation (6). A least-squares fitting procedure
was applied to the observed dispersion curves for which we
considered exchange couplings Jn up to the sixth coordinating
shell as listed in table 1 (by placing the tetramer at site m at
the origin, we can skip the index m of Jnm in equation (5);
see figure 1(b)). In a first step we performed a simultaneous

5
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Figure 7. Dispersion of the four excitation branches observed for
α-MnMoO4 for the [x, x, 0] direction at 1.5 K. The symbols and
lines are as in figure 5.

fitting of all the excitation branches I–IV (fit A). The second
fit was restricted to the lowest-lying excitation branch I alone
(fit B). Finally, a simultaneous fitting of the excitation branches
II–IV was carried out (fit C). The choice of these different
fits is motivated by the different nature of the four transitions,
�S = 0 for transition I and �S = −1 for transitions II–IV
(see the inset of figure 2). The calculated dispersion curves for
fits A and B are shown in figure 5–7 (the results of fit C are only
marginally different from A). The acoustic and optic branches
turn out to be almost degenerate at the zone boundary, but these
are accidental degeneracies, and only at q = (0, 1/2, 1/4) is
the degeneracy dictated by symmetry.

5. Discussion and conclusions

The model parameters �r listed in table 1 are distinctly
different from the mean transition energies observed in the
powder experiments [8] (see figure 2), which demonstrates
the importance of single-crystal experiments for a precise
determination of the intracluster interactions. With the help of
equation (3) we determine the intracluster exchange parameters
and the molecular field to be

j = 54(3) μeV, j ′ = −4(7) μeV,

j ′′ = 18(8) μeV, Hmf = 5.4(3) T.

Some of these values considerably differ from the
parameters j = 51 μeV, j ′ = −19 μeV, j ′′ = 0, Hmf = 6.3 T
derived from the powder experiments [8].

The net coupling within the tetramers in α-MnMoO4 is
ferromagnetic, which is very unusual for Mn2+ based magnets.
Since each Mn2+ ion has five unpaired electrons, the net
exchange between two Mn2+ ions is actually the sum of
5 × 5 = 25 orbital contributions. We conclude that the specific
geometries of the Mn–O–Mn bridges in α-MnMoO4 lead to
an almost complete cancellation of the 25 contributions, with
the resulting j values being much smaller than the individual
orbital contributions.

The dispersion model based on equation (6) turned
out to be a reasonable approximation for the interpretation
of the magnetic excitations in α-MnMoO4. With the
overall dispersion of about 0.3 meV being defined by the
Fourier transformed exchange function, the condition for
the applicability of equation (6), |J (q) ± |J ′(q)|| � �r ,
is increasingly fulfilled by going from the lowest branch
with r = I up to IV. We recognize that the intercluster
couplings Jn listed in table 1 are comparable to the intracluster
exchange parameters j , j ′ and j ′′ in magnitude. This was
also concluded from a qualitative analysis of the Mn–Mn
superexchange couplings based on the H –T phase diagrams
of α-MnMoO4 [14]. Nevertheless, the similar magnitudes
of the intra and intercluster exchange parameters do not
call the applicability of equation (6) into question, since the
relevant energy scale is set by the energies �r , for which
the contribution of the parameters j , j ′ and j ′′ is enhanced
by large prefactors; see equation (3). In other words, the
predominantly ferromagnetic intracluster couplings give rise
to quite robust tetramer states, whereas the net effect of the
intercluster interaction is considerably damped due to the
partial cancellation of the ferromagnetic and antiferromagnetic
exchange parameters Jn .

The fact that the best fits A and C resulted in standard
deviations of about χ2 ≈ 4 points to some shortcomings of the
dispersion model (equation (6)). A possible improvement of
the model is to expand the excitation energies order by order in
the inter-tetramer interactions. Such an approach was carried
out for dimer spin systems [15]. It was found that, from the
second order, new terms appear that are not present in the
square root of equation (7). Another problem is related to the
different nature of transitions I–IV, so that initial and final state
effects have to be considered, i.e., the intercluster interactions
Jnm have to be treated as tensors Jnm(T i

n, T i
m; T f

n , T f
m), where

T = {S12, S34, S}, and the labels i and f refer to the initial and
final states of the transition, respectively. The exchange tensor
formalism was postulated as long as 40 years ago [16], but so
far its relevance has only been demonstrated experimentally
for the compounds Cs3Ho2Br9 [17] and Nd2CuO4 [18]. For
the lowest branch I the tensor formalism is irrelevant, since
the transition is governed by �S12 = �S34 = �S = 0
(see the inset of figure 2) and therefore resembles a classical
spin-wave excitation. Accordingly, fit procedure B converged
to an optimum standard deviation χ2 = 1, resulting in

6



J. Phys.: Condens. Matter 21 (2009) 026019 P S Häfliger et al

partly different exchange parameters Jn as compared to fits A
and C. Thus we may consider the parameters of fit B to be
more reliable than those of fits A and C. This assumption
is supported by a comparison of the observed and calculated
molecular field, which is given by

Hmf = 2

gμB

4∑

ν=1

〈sz
ν〉

6∑

n=1

zn Jn = 2

gμB
〈Sz〉

6∑

n=1

zn Jn, (11)

where zn is the number of nth nearest-neighbour tetramers.
From neutron diffraction the saturation moment of the Mn2+
ions was determined to be 〈sz〉 = 2.35 and therefore 〈Sz〉 =
4〈sz〉 = 9.4 [10]. From the parameters of fit B we find∑

zn Jn = 44(32) μeV. Insertion into equation (11) yields
Hmf = 7.1(4.9) T, which is comparable to Hmf = 5.4 T
determined from the energies �r listed in table 1. On the other
hand, the parameters of fit A yield

∑
zn Jn = 188(85) μeV,

resulting in an unrealistically large value of Hmf = 30(14) T.
The lowest acoustic branch I does not soften completely at

the magnetic zone centres, but a gap of 0.28(4) meV remains.
This is most likely a single-ion anisotropy. Assuming an axial
anisotropy, this takes the form

Han = D
∑

i

(sz
i )

2 (12)

and yields the anisotropy parameter D ≈ 45(6) μeV. This
is comparable to the gap energy of 0.4 meV reported for the
related compound MnWO4 [19].

In conclusion, the magnetic excitation spectra of the
tetramer-based compound α-MnMoO4, determined by single-
crystal INS experiments, have been presented for wavevectors
along different symmetry directions. The observed dispersion
relations have been analysed with use of an RPA-like
dispersion model which treats the intercluster interactions
as a perturbation of the localized tetramer transitions. α-
MnMoO4 thus provides a model system to study the interplay
of intra and intercluster interactions. In order to obtain
quantitative results for the most important couplings between
neighbouring tetramers, it was necessary to use a single crystal
and to follow the various excitation branches by INS along all
the relevant directions of the Brillouin zone. Such information
is usually not available with molecular cluster materials, since
these cannot be grown as 10 g single crystals.
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